Back to Search
ISBN 9798672466019 is currently unpriced. Please contact us for pricing.
Available options are listed below:

Particle Trajectory and Icing Analysis of the E(sup 3) Turbofan Engine Using LEWICE3D Version 3

AUTHOR Administration (Nasa), National Aeronaut
PUBLISHER Independently Published (08/05/2020)
PRODUCT TYPE Paperback (Paperback)

Description
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20, and 100 microns. Particle trajectory and ice shape predictions were made for a 20 micron Langmuir-D distribution and for a 92 mm Super-cooled Large Droplet (SLD) distribution with and without splashing effects for a Liquid Water Content (LWC) of 0.3 g/cu m and an icing time of 30 min. The E3 fan and spinner combination proved to be an effective ice removal mechanism as they removed greater than 36 percent of the mass entering the inlet for the icing cases. The maximum free stream catch fraction for the fan and spinner combination was 0.60 while that on the elements downstream of the fan was 0.03. The non-splashing trajectory and collection efficiency results showed that as drop size increased impingement rates increased on the spinner and fan leaving less mass to impinge on downstream components. The SLD splashing case yielded more mass downstream of the fan than the SLD non-splashing case due to mass being splashed from the upstream inlet lip, spinner and fan components. The ice shapes generated downstream of the fan were either small or nonexistent due to the small available mass and evaporation except for the 92 m SLD splashing case. Relatively large ice shapes were predicted for internal guide vane #1 and rotor #1 for the 92 m SLD splashing case due to re-impingement of splashed mass. Bidwell, Colin S. Glenn Research Center NASA/TM-2012-217696, E-18383 WBS 648987.02.03.03.30 ICE FORMATION; TRAJECTORY ANALYSIS; MOISTURE CONTENT; PARTICLE TRAJECTORIES; TURBOFAN ENGINES; SPLASHING; FLOW DISTRIBUTION; IMPINGEMENT
Show More
Product Format
Product Details
ISBN-13: 9798672466019
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 38
Carton Quantity: 108
Product Dimensions: 8.50 x 0.08 x 11.02 inches
Weight: 0.25 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Reference | Research
Reference | Space Science - General
Descriptions, Reviews, Etc.
publisher marketing
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20, and 100 microns. Particle trajectory and ice shape predictions were made for a 20 micron Langmuir-D distribution and for a 92 mm Super-cooled Large Droplet (SLD) distribution with and without splashing effects for a Liquid Water Content (LWC) of 0.3 g/cu m and an icing time of 30 min. The E3 fan and spinner combination proved to be an effective ice removal mechanism as they removed greater than 36 percent of the mass entering the inlet for the icing cases. The maximum free stream catch fraction for the fan and spinner combination was 0.60 while that on the elements downstream of the fan was 0.03. The non-splashing trajectory and collection efficiency results showed that as drop size increased impingement rates increased on the spinner and fan leaving less mass to impinge on downstream components. The SLD splashing case yielded more mass downstream of the fan than the SLD non-splashing case due to mass being splashed from the upstream inlet lip, spinner and fan components. The ice shapes generated downstream of the fan were either small or nonexistent due to the small available mass and evaporation except for the 92 m SLD splashing case. Relatively large ice shapes were predicted for internal guide vane #1 and rotor #1 for the 92 m SLD splashing case due to re-impingement of splashed mass. Bidwell, Colin S. Glenn Research Center NASA/TM-2012-217696, E-18383 WBS 648987.02.03.03.30 ICE FORMATION; TRAJECTORY ANALYSIS; MOISTURE CONTENT; PARTICLE TRAJECTORIES; TURBOFAN ENGINES; SPLASHING; FLOW DISTRIBUTION; IMPINGEMENT
Show More
Paperback