Back to Search

Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons

AUTHOR Knaup, Julian
PUBLISHER Springer Vieweg (08/08/2022)
PRODUCT TYPE Paperback (Paperback)

Description
Multilayer neural networks based on multi-valued neurons (MLMVNs) have been proposed to combine the advantages of complex-valued neural networks with a plain derivative-free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. This book introduces a novel approach to assign multiple classes to numerous MVNs in the output layer. It was found that classes that possess similarities should be allocated to the same neuron and arranged adjacent to each other on the unit circle. Since MLMVNs require input data located on the unit circle, two employed transformations are reevaluated. The min-max scaler utilizing the exponential function, and the 2D discrete Fourier transform restricting to the phase information for image recognition. The evaluation was performed on the Sensorless Drive Diagnosis dataset and the Fashion MNIST dataset.
Show More
Product Format
Product Details
ISBN-13: 9783658389543
ISBN-10: 3658389540
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 77
Carton Quantity: 76
Product Dimensions: 5.83 x 0.22 x 8.27 inches
Weight: 0.29 pound(s)
Feature Codes: Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Computers | Computer Science
Computers | Probability & Statistics - General
Descriptions, Reviews, Etc.
jacket back
Multilayer neural networks based on multi-valued neurons (MLMVNs) have been proposed to combine the advantages of complex-valued neural networks with a plain derivative-free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. This book introduces a novel approach to assign multiple classes to numerous MVNs in the output layer. It was found that classes that possess similarities should be allocated to the same neuron and arranged adjacent to each other on the unit circle. Since MLMVNs require input data located on the unit circle, two employed transformations are reevaluated. The min-max scaler utilizing the exponential function, and the 2D discrete Fourier transform restricting to the phase information for image recognition. The evaluation was performed on the Sensorless Drive Diagnosis dataset and the Fashion MNIST dataset.
About the AuthorJulian Knaup received his B. Sc. in Electrical Engineering and his M. Sc. in Information Technology from the University of Applied Sciences and Arts Ostwestfalen-Lippe. He is currently working on machine learning algorithms at the Institute Industrial IT and researching AI potentials in product creation.
Show More
publisher marketing
Multilayer neural networks based on multi-valued neurons (MLMVNs) have been proposed to combine the advantages of complex-valued neural networks with a plain derivative-free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. This book introduces a novel approach to assign multiple classes to numerous MVNs in the output layer. It was found that classes that possess similarities should be allocated to the same neuron and arranged adjacent to each other on the unit circle. Since MLMVNs require input data located on the unit circle, two employed transformations are reevaluated. The min-max scaler utilizing the exponential function, and the 2D discrete Fourier transform restricting to the phase information for image recognition. The evaluation was performed on the Sensorless Drive Diagnosis dataset and the Fashion MNIST dataset.
Show More
List Price $99.99
Your Price  $98.99
Paperback